
 

 

  
Abstract—The objective of this paper is to study the stability of 

equilibrium points of a model equation, which governs two- 
dimensional steady capillary-gravity waves of an ideal fluid flow with 
Bond number near 1/3 and Froude number close to one. Nine cases in 
the parameter plane 1 2( ,  )Fτ , we found that the equilibrium point 
(0,0,0,0) is Liapunov stable in Case 3 except when 1 2 2,w w =  almost 
stable in Case 4, and Liapunov unstable otherwise. 
 

Keywords—Arnold’s stability theorem, Birkhoff normal form, 
Steady capillary-gravity wave, 

I. INTRODUCTION 

ROGRESSIVE capillary-gravity waves on an irrotional 
incompressible inviscid fluid of constant density with 

surface tension in a two-dimensional channel of finite depth 
have been studied since nineteen century. Assume that a 
coordinate system moving with the wave at a speed is chosen so 
that in reference to it the wave motion is steady. Let H be the 
depth of water, g the acceleration of gravity, T the coefficient of 
surface tension, and ρ the constant density of the fluid. Then 
there are two nondimensional numbers which are important and 
defined as )/(2 gHcF = , the Froude number, and )/( 2gHT ρτ = , 
the Bond number.  

When F is not close to 1, the linear theory of water waves is 
applicable. But when F approaches to 1, the solutions of 
linearized equations of water waves will grow to infinity 
(Peters and Stoker [17]). Therefore for F close to 1 nonlinear 
effect must be taken into account and thus 1F = is a critical 
value. The first study of a solitary wave on water with surface 
tension is due to Korteweg and DeVries [11] after whom the 
K-dV equation with surface tension effect is named. A 
stationary K-dV equation with Bond number not near1 3 can 
also be formally derived by different approaches. However, 
ifτ is close to 1, the formal derivation of the stationary K-dV 
equation fails. Thus 1 3τ = is also a critical value.  
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It becomes apparent that the problems for F near 1 and 
forτ near1 3depend on each other and are difficult because 
they are not only strongly nonlinear, but also very delicate. 
Since the full nonlinear equations for the water waves are too 
complicated to study, it is of interest to study model equations. 
In Hunter and Vanden-Broeck’s work [9], a fifth order ordinary 
differential equation considered as a perturbed stationary K-dV 
equation was obtained with the assumption that 2

21F F= + є , 
11 3τ τ= + є  and єis a small positive parameter. By integrating 

the fifth order ordinary differential equation once and set the 
con-stant of integration to be zero, then the model equation 
becomes 

2
2 1

3 12 + 0
2 45xx xxxxFη η τ η η− − =                        (1) 

Equation (1) has been studied extensively by many authors 
[1-7,9] and several types of solutions have been found, such as 
periodic solutions [1, 5, 6, 7], solitary wave solutions [2-7,9], 
generalized solitary wave solutions (solitary waves with 
osciallatory tails at infinity) in the parameter region 1 0τ <  and 

2 0F >  [1,9], etc. 

II.  PROBLEM FORMULATION 

We add a bump ( )y b x=  at the bottom of the two- 
dimensional ideal fluid flow and then derive a forced model 
equation 

2
2 1

3 12 +
2 45xx xxxxF bη η τ η η− − =                         (2) 

Equation (2) has been studied extensively by Tsai and Guo 
[21-26] and several types of solutions have been found. 

We follow Zufiria [27] to construct a Hamiltonian 
associated to (2). 

When 0=b , we rewrite (2) as 
2

1 2
13545 90 0

2xxxx xx Fη τ η η η− − + = .                   (3) 

We multiply xη− to (3) and integrate the resulting equation, then 
equation (3) has first integral as 

2 2 2 3
2 1

1 45 4545
2 2 2x x xxx x xH Fη η η η τ η η= + − + − ,            (4) 

where H is a constant. Introducing the change of variables 
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1 1 1

2 2

45xxx x,

xx x ,

q , p
q , p

η η τ η
η η

= = − ⎫⎪
⎬= = ⎪⎭

 

then (4) becomes 

 ( ) 2 2
1 2 1 2 2 1 2

1, =45
2

H q q , p , p F q q+ 2 3
1 2 1 2 1

45 45
2 2

p p p qτ− − − ,      (5) 

and we have 

( ) ( ) ( , )z
dz J H z Az g z f z
dx

μ= ∇ = + ≡ ,                (6) 

where 2
1 2( , )Fμ τ= ∈ R , 

1

2 4

1

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

q
q

z , J
p
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ∈ =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠⎝ ⎠

R ,                (7) 

and 

      1
2135

2 12

0 0 0 1 0
0 0 1 45 0

( ) =
90 0 0 0
0 1 0 0 0

A , g z
F q

τ
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠

.            (8) 

 Therefore (5) is a two degree of freedom Hamiltonian with 
two parameters 1τ and 2F . Because different parameters 1 2( , )Fτ  
in (5) give rise to different eigenvalues λ  for the linearized 
system of (6) at the origin, we divide the parameter plane 

1 2( , )Fτ  into following nine cases  

Case 0 1 2( 0 0): =0,0,0,0,Fτ λ= = . 
Case 1 1 2( 0): = , ; , 0,F r wi r wτ λ∈ > ± ± >R . 
Case 2 1 2( 0 0): =0,0, ; 0,F wi wτ λ< = ± > . 
Case 3 2

1 2 1 2( 0 0  (45 ) 360 0): ,F , Fτ τ< < + >  

1 2 1 2, ; 0w i w i w wλ = ± ± > > . 
Case 4 2

1 2 1 2( 0 0  (45 ) 360 0):,F , Fτ τ< < + =  
, ; 0wi wi wλ = ± ± >  

Case 5 2
1 2 1 2( 0, (45 ) 360 0):,F Fτ τ∈ < + <R  
= ; , 0a bi a bλ ± ± >  

Case 6 2
1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + =>  
= , ; 0r r rλ ± ± >  

Case 7 2
1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + >>  

1 2 1 2= , ; 0r r r rλ ± ± > >  
Case 8 1 2( 0 0): =0 0 ; 0,F , , r rτ λ= ± >> . 

We rewrite (2) as follows, 
2

1 2
345 90 45( ( )) ) ,
2xxxx xx F x fη τ η η η− − = − + ≡b           (9) 

III. STABLE CASES FOR ZERO SOLUTION 

For Case 3 with 1 2 2w w ≠ and Case 4, we’ll utilize the results 
by Meyer [15], Markeev [12], and Sokol’skii [18] to show that 
the origin is stable, except that Case 4 is almost stable. 

 3.1 Case 3, with 1 2 2w w ≠  

In Case 3, there are two pairs of pure imaginary eigenvalues, 
1w i± and 2w i± . Arnold’s Stability Theorem [15] (p.236) will be 

used to prove the equilibrium point 0z = is stable 
for 1 2 2,3w w ≠ , while Markeev’s results in [12] will show that 
the origin is unstable for 1 2 2w w = and stable for 1 2 3w w = . 

 3.1.1 Arnold’s stability theorem for 1 2 2,3w w ≠  

 We state the method cited from [15] as follows. Consider an 
analytic Hamiltonian, H, which has an equilibrium point at the 
origin in 2nR , and assume that the Hamiltonian is zero at the 
origin. Then H has a Taylor series expansion of the form 

0

( ) ( ),i
i

H z H z
∞

=

= ∑% %                                         (10) 

where iH is a homogeneous polynominal in z of deg- ree i + 2. 
 
 Theorem 1 [15] (p.184) (Birkhoff  normal form) Assume 
that the quadratic part of (10) is of the form 

0
1

( ) ,i i i
i

H z q pλ
∞

=

= ∑ % %%                                       (11) 

where 1 1( ,..., , ,..., )n nz q q p p= % % % %% and the  iλ ’s are independent over 
the integers, i.e., there is no nontrivial relation of the form 

1

0,i i
i

K λ
∞

=

=∑  

where the ik ’s are integers. Then there exists a formal, 
symplectic change of variables ( )z Q y= =% ...y + which 
transforms the Hamiltonian (8) to the Hamiltonian, 

1
( ) ( ),i

i

K y K y
∞

=

= ∑  

where 1 1( ,..., , ,..., )n ny x x y y= and ( )iK y is a homogenous 
polynomial of degree i + 2 in the n products 1 1,..., n nx y x y . 
So, 1 1( ,..., , ,..., )n nK x x y y = 1 1( ,..., )n nK x y x y where K is a function 
of n variables. Moreover, in this case, the normal form is 
unique. 

In Birkhoff normal form, 2 1 0iK + = for i = 0, 1, 2 … since 
1 1 1 1( ,..., , ,..., ) ( ,..., ).n n n nK x x y y K x y x y=  Consider two-degree 

of freedom Hamiltonian for simplicity and assume the 
Hamiltonian has been transformed to Birkhoff normal form 
upto 2NK  

0 2 2... .NK K K K K += + + + +                     (12) 

 By “action” variables 1 1 1I ix y= and 2 2 2I ix y= , then 

2 1 2 2 1 1 2 2( , ) ( , ).j jK I I K x y x y≡%  

Arnold proved the following theorem which is based on the 
existence of invariant tori in KAM theory and gives sufficient 
conditions for stability of nonresonant systems in terms of the 
transformed Hamiltonian 2 1 2( , )jK I I% put in Birkhoof normal 
form. 
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Theorem 2 [15] (p.236) (Arnold’s Stability Theorem) The 
origin is stable for the system whose Hamiltonian is (12), 
provided for some j, 0 ,j N≤ ≤ 2 2j jD K= % , 2 1( , ) 0.w w ≠  

First we find a symplectic transformation 3T to transform the 
quadratic part of Hamiltonian (5) to the form (11), where 

2 2 2 2

1 2 1 21 2 1 2

1 2 1 22 2 2 2

1 2 1 2

2 2 2 2
2 1 2 11 1 1 1

1 2 1 2

1 1 1 1

1 2 1 2

3

i i i i

r r r r

i i i i

r r r r

i i i i

r r r r

i i i i

r r r r

w w w w
w w w w w w w w

w w w w w w w w
w w w w

w w w w w w w w
w w w w

w w w w
w w w w

T

− −

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

1 2,w w  are imaginary parts of eigenvalues in Case 3 and 

2

2
2

2
1

1

2
2

2
1

2121
,,

2
1,

2
1

w
www

w
wwwiwiw rrii

−
=

−
=

−
=

+
=      (13) 

with the properties that 3 3 3, ,TT JT J z T z= = %  where 

1 2 1 2( , , , ),z q q p p= % % % %%  J as in (7). Then (5) becomes 

21 1 1 2 2 2
45
2 iH iw q p iw q p w= − −% % % %  

2 1

1 2

2 1 1 1 2 2 3

1 2

( ) ( )
       ( ) ,r r

r r

w w p q w w q p
w w w w

− + −% % % %
               (14) 

and the quadratic part is 0 1 1 1 2 2 2( )H z iw q p iw q p= −% % % %%  
Next, we apply Lie transform [7] to transform (14) to 

Birkhoff normal form up to fourth order 2K as in (12). Here we 
assume that 1 2 2,w w ≠ 3 since we can not remove the resonant 
terms such that the transformation yields Birkhoff normal form. 
Then we have  

2 4 6 8

2 4 2 2 2 4 8
2

6075(20 53 276 53 20 )
16 ( 1 ) (4 17 4 )

w w w wD
w w w w w

− − − +
=

− + − +  

where 1 2 1w w w= >  
Thus, by Arnold’s stability theorem and 1 2w w  2,3, 0z≠ = is 

stable except when  

1 1 (53 3 3121 24498 318 3121)
4 5

w w∗= = + + +   2.308.≈  

In this case 2 0.D =  Stability is assured if 4 0D ≠ , and so on. 
We did not get the value for 4D atw w∗=  because of  ” Out of 
memory” by using the software Mathematica. But the origin is 
stable atw w∗= from our numerical experience.  

3.1.2 Markeev’s results for 1 2 3w w =   

In [12], Markeev considered the resonance situation 
for 1 2 3w w w= =  with a Hamiltonian in the follow- ing form  

1 2 3 4

2 2 2 2 2 2
1 1 1 2 2 2

3

1 1( ) ( )
2 2 v v v v

v
H p w q p w q g

=

= + − + + ∑% % % % %  

3 31 2 4 1 2 4

1 2 3 4

5
1 2 1 2 1 2 1 2

4
(| | )v vv v v v v v

v v v v
v

q q p p h q q p p O z
=

+ +∑ %% % % % % % % % %        (15) 

where  

2 2 2 2
1 2 1 2| |z q q p p= + + +% % % %% ,  1 2 3 4v v v v v= + + + . 

We transform Hamiltonian (5) to (15) by a symplectic 
transformation 33z T z= % , where  

3/ 2 3/ 2
1 21 2

1/ 2 1/ 2
1 2

1 2

1/ 2 2 1/ 2 2
1 2 2 1

1 2

1/ 2 1/ 2
1 2

1 2

1 1

33

0 0

0 0

0 0

0 0

r r

r r

r r

r r

w w w w

w w
w w

w w w w
w w

w w
w w

T

−⎛ ⎞
⎜ ⎟
⎜ ⎟−⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠ , 

then (5) becomes  

1

3
2 2 2 2 2 2 1
1 1 1 2 2 2 9/ 2

1

451 1( ) ( )
2 2 2 r

pH p w q p w q
w w

= + − + − +
%

% % % %  

2 1 2 1 2

3 2 2
2 1 2 1 2
9/ 2 2 3/ 2 3 2 3 3/ 2
2 1 2 1 2

45 135 135
2 2 2r r r r r

p p p p p
w w w w w w w w w w

− +
% % % % %

 (16) 

 In [12], with the assumption 
2 2
1003 1003 0x y+ ≠ ,                             (17) 

(see Appendix for 1003x , 1003y ), Markeev utilized several 
canoncial transformations and applied Birkhoff transformation 
to remove all third order terms. Out of the fourth degree terms, 
only the resonant ones and those containing iq% and ip% in the same 
degree will remain. With assumption (17), Markeev proved the 
following results by Liapunov’s theorem [13] (p.32). 

 
Theorem 3  If the inequality 

2 2
1003 1003 0x y+ ≠ , 

2 2
2 1003 1003 2020 1111 02023 | 3 9 |w x y l l l+ < − + , 

holds and the Hamiltonian (15) contains no terms of the order 
higher than the fourth, then the equilibrium is stable. (see 
Appendix for 2020l , 1111l , and 0202l ) 
 
 Note that Markeev [12] provided numerical formulas for 

1003 1003 2020 1111 0202, , , ,x y l l l in terms of the cofficients in (15), i.e., 

1 2 3 4v v v vg% and
1 2 3 4v v v vh% . By comparing Hamiltonians  (15) and (16) 

term by term, we have 

                  
 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0,       3,

0,       4,
v v v v

v v v v

g for v v v v

h for v v v v

= + + + = ⎫⎪
⎬

= + + + = ⎪⎭

%

%                (18) 

except 

6 6 6
2 2 2

15 3 15 3 15 3
0012 0021 00304 8 16

, , ,
w w w

g g g= − = = −% % % 6
2

5 3
0003 2

,
w

g =%        (19) 

By (18) and (19) and following Markeev’s nummerical 
formulas, we have 

11
2

1215
1003 1003256

,  0,
w

x y= − =

10 10 10
2 2 2

3165 2295 2835
2020 1111 02027168 1792 1024

,    ,    ,
w w w

l l l= − = = −  
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and then obtain 2 2
1003 1003 0x y+ ≠  and 2 2

2 1003 1003{(3 )w x y+  
10

2020 1111 0202 2| 3 9 |} 53625 (3584 ) 0l l l w− − + = − < .Thus, by 
Theorem 3,  the equilibrium 0z = is stable when 1 2 3.w w =  

 3.2 Case 4 

In this case, there are two pairs of double eigenva- 
lues iw± with two two-dimensional Jordan blocks. Sokol’skii 
[18] deals with this situation. Let the Hamilton function of the 
problem be represented in the form      

              
1 2 3 4

2 2
1 2 1 2 2 1

3

1 ( ) ( )
2 v v v v

v

H q q w q p q p h
∞

=

= + + − + ∑ %% % % % % %  

                   31 2 4
1 2 1 2 2 3 4 ... ...vv v v

mq q p p H H H H= + + + + +% % % %       (20) 
where mH are mth-degree polynomials in the coor- 
dinates iq and momenta ip , 1, 2i = . The form 3H in (20) can be 
annulled completely and the form 4H  simplified by the 
Birkhoff transformation. The Ha- miltonian (20) then can be 
reduced to     

2 2 2 2
1 2 1 2 2 1 1 2

1 ( ) ( ) ( )
2

H q q w q p q p p p∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + − + +

{ }2 2 2 2
4 1 2 4 1 2 2 1 4 1 2( ) ( ) ( )A p p B q p q p C q p∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗+ + − + + 5 ...H+ +   (21)                     

With (21), Sokol’skii [8] got the following theorem 

Theorem 4 The equilibrum position is almost stable if 
4 0A > and is Liapunov unstable if 4 0A <  in (19). 

After transforming (5) to (20) by a symplectic transformation, 
1 2 1 2 4 1 2 1 2( , , , ) ( , , , )t tq q p p T q q p p= % % % % , where 

2

2

1 1
2 22 2

3
2 2 2

4 3
2 2 2

1 1
2 2 2

0 0

0 0
,

0 0

0 0

ww

w

w w
T

ω

−⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

                 (22) 

we have 
2 2
1 2 1 2 2 1

1 ( ) ( )
2

H q q w q p q p= + + −% % % % % %  
3 2 2 3
1 1 2 1 2 2

6 5 4 3

45 135 135 45
32 2 16 2 8 2 4 2

q q p q p p
w w w w

− + − +
% % % % % %

          (23) 

Comparing (20) and (23), we have 
6 5

45 135
3000 200132 2 16 2

,  ,
w w

h h= − =% %
4 3

135 45
1002 00038 2 4 2

,  ,
w w

h h= − =% %    (24)               

and
1 2 3 4

0v v v vh =% for other 1 2 3 4.v v v v  Sokol’skii [18] also provided 

numerical formulas in terms of
1 2 3 4v v v vh to compute 4A in (21) and 

then we obtain 

4 8

38475
256

A
w

=  

By Theorem 4, the equilibrium at the origin is almost stable 
which as defined in Moser [16] 

IV. UNSTABLE CASES FOR ZERO SOLUTION  

 For Case 0, 2 and Case 3 with 1 2 2,w w = we’ll utilize the 
results by Sokol’skii [19], [20], and Markeev [12] respectively 
to show that the origin is unstable. For Case 1, 5, 6, 7, 8, we use 
a theorem by Liapunov to prove the instability for these five 
cases. 

 4.1 Case 0 

 In this case, all four eigenvalues are zero. Sokol’skii [20] 
deals with this situation. Let the Hamilton function of the 
problem be represented in the form 

2 3 4 ... ...mH H H H H= + + + + +                   (25) 
where the mH are mth-degree homogeneous polynomials in 

the generalized coordinates kq and momenta kp (k = 1, 2):  
31 2 4

1 2 3 4
1 2 3 4

1 2 1 2
vv v v

m v v v v
v v v v m

H h q q p p
+ + + =

= ∑                   (26) 

 According to Sokol’skii [20], if the rank of the second 
derivative of H in (25) at the equilibrium zero is 3, then there is 
a symplectic transformation 0T , with 1 2 1 2 0 1 2 1 2( , , , ) ( , , , ) ,t tq q p p T q q p p= % % % %   
to transform H in (25) to a simpler form 

   2
1 1 2

1
2

H p q qδ= −% % % 31 2 4

1 2 3 4 1 2 1 2
3

,   ( 1)vv v v
v v v v

m

h q q p p δ
∞

=

+ = ±∑ % % % % %      (27) 

With (27) and by Chetaev theorem [13] (p.43), Sokol’skii 
[20] obtained the following result, 

Theorem 5 In (27), if 0003 0h ≠% , then the equilibrum position 
is unstable. 

From (9), the rank of the second derivative of H in (5) at the 
equilibrium zero is 3 when 1 0τ = and 2 0F = . Following 
Sokol’skii [20], we found a slmplectic transformation 0T , 

0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

T

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

,                            (28) 

which transform (5) to (27) by 1 2 1 2( , , , )tq q p p =  0 1 2 1 2( , , , )tT q q p p% % % %  
and then we have 

2 3
1 1 2 2

1 45 .
2 2

H p q q p= − −% % % %                          (29) 

 From (29), we obtain 

0003
45 0.
2

h = − ≠%  

By Theorem 5, the equilibrium at 0z = is unstable. 

 4.2 Case 1, Case 5, Case 6, Case 7 and Case 8 

Lyapunov proved the following theorem: 

Theorem 6 [8] Suppose ( ) 0f z∗ = and z∗ is a stable 
equilibrium point of the nonlinear systemdz dx  ( )f z= , then 
no eigenvalue of ( )Df z∗ has a positive real part. 
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For Cases 1, 5, 6, 7, 8, the equilibrium point 0z = is unstable 
since there is at least one eigenv- alue with positive real part in 
each case.  

4.3 Case 2 

In this case, two eigenvalues are zero and the other two are 
pure imagimary, .wi± Sokol’skii [19] deals with this situation. 
Let the Hamilton function of the problem be represented in the 
form same as (25) and (26). If there is a symplectic 
transformation 2T , with 1 2 1 2 2 1 2 1 2( , , , ) ( , , , )t tq q p p T q q p p= % % % % , to 
transform H in (25) to 

2 2 2
1 1 2 2 2

1 1 ( )
2 2

H q w q pδ δ= + +% % %  

31 2 4

1 2 3 4 1 2 1 2 1 2
3

,     ( 1,     1),vv v v
v v v v

m

h q q p p δ δ
∞

=

+ = ± = ±∑ % % % % %      (30) 

then with (30) and by Liapunov’s instability theorem [4] (p.45),  
Sokol’skii [19] proved the following results:  

Theorem 7 In (30), if 0030 0h ≠% , then the equilibrium position 
is unstable. 

Following Sokol’skii [19], we found a slmplectic 
transformation 2T , 

3 / 2

1/ 2

1 1

1/ 2

2

1 1

0 0

0 0 0
,

0 0 0
0 0

ww

w w

w
T

w

−⎛ ⎞
⎜ ⎟

−⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

                (31) 

which transforms (5) to (30) by 
1 2 1 2 2( , , , )tq q p p T= 1 2 1 2( , , , )tq q p p% % % %  

and then we have  
2 2 2 3
1 2 2 29/ 2

1 1 45( )
2 2 2

H q w q p q
w

= − + + −% % % % . 

2 2 3
2 1 2 1 14 7 / 2 3

135 135 45
2 2 2

q p q p p
w w w

+ − +% % % % %      (32) 

From (32), we obtain  

0300 9/ 2

45 0
2

h
w

= − ≠% . 

By Theorem 7, the equilibrium at z = 0 is unstable in this 
case. 

4.4 Case 3, with 1 2 2w w =  

In [12], with Hamiltonian (13) and the assumption  
2 2
1002 1002 0x y+ ≠                                    (33) 

where  
1

1002 0111 1002 12002
2 2

1 1
2 2 2
wx g g g
w w

= − − +% % % , 

1 1
1002 0012 0210 11012

2 2

1
2 2 2
w wy g g g

w w
= − + +% % %              (34) 

Markeev utilized several canoncial transformations and 
applied Birkhoff transformation to remove all third order terms 

except the resonant ones. Then the Hamiltonian (15) becomes, 
in the new variables iq

∗ and ip
∗ , 

2 2 2 2
2 1 1 2 2 2

1 1( ) ( )
2 2

H w q p w q p∗ ∗ ∗ ∗= + − + −  

2 2 2 2
2 1002 1002 1 2 2 1 2 2

12 ( )( ( ) )
2

w x y q p q p q p∗ ∗ ∗ ∗ ∗ ∗+ − + 4(| | )O z∗+     (35) 

With Hamiltonian (35) and assumption (33), Markeev 
proved the following result by means of Chetaev theorem [13] 
(p.43). 

Theorem 8 If the inequality 2 2
1002 1002 0x y+ ≠ holds for the 

Hamiltonian of a perturbed montion, then the equilibrium is 
unstable. 

Put (18) and (19) in (34) to obtain 
2 2
1002 1002 10

2

675 0
16

x y
w

+ = ≠ . 

Thus, by Theorem 8, the equilibrium z = 0 is unstable 
when 1 2 2w w = . 

At this stage, we are ready to summarize our disscussion 
above as follows:  

Theorem 9 The zero solution of equation (3) is Liapunov 
stable in Case 3 except when 1 2 2w w = , almost stable in Case 4, 
and unstable otherwise. 

Fig. 1 illustrates Theorem 9 in the parameter plane 1 2( , )Fτ .  

 

Figure 1: Nine cases in the parameter plane 1 2( ,  )Fτ  for 
equilibrium (0,0,0,0). The equilibrium is Liapunov stable in 
Case 3 except when 1 2 2,w w =  i.e., 2F

2
1

18
5 τ= −  with 1 0,τ <  

the ”***” curve, almost stable in Case 4, and Liapunov 
unstable otherwise. 

V. 5 CASES FOR NONZERO SOLUTION 

In order to study the motion near the other equilibrium point 
4

23( ,0,0,0)F  and utilize the results above, we transform (6) to 
new coorinates by 

1 1 2
4
3

q q F= −% , 2 2q q=% , 3 3q q=% , 4 4q q=% . 

This transformation to the new coordinates 1 2( , ,q q% %  3 4, )q q% %  is 
obviously symplectic. So we can perform this change of 
coordinates in the Hamiltonian (6) and preserve its structure. 
Expanding in the new variables, we obtain 
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2 2
1 2 1 2 2 1 2 1 2

1( , , , ) 45
2

H q q p p F q q p p= − + −% % % % % % % % 2 3
1 2 1

45 45
2 2

p qτ− −% %    (36)   

There are no linear terms because the expansion is performed 
near an equilibrum and the constant term has been omitted 
because it contributes nothing in forming the corresponding 
systems of differential equations. 

We see that the only difference between Hamil- tonian (5) 
and (36) is the cofficients of 2

1q  and 2
1q% , which are 245F  and 

245F− respectively, i.e., Hamiltonian (5) and (36) are 
symmetric with respect to 02 =F . Therefore, by considering 
the symmetry with respect to 02 =F , the results in Theorem 9 
for )0,0,0,0(),,,( 4321 =qqqq , the equilibrium of Hamilton 
equations of (5), can be carried over 
for 1 2 3 4( , , , ) (0,0,0,0)q q q q =% % % % , the equilibrium of Hamilton 
equations of (36),i.e., for 1 2 3 4( , , , )q q q q = 4

23( ,0,0,0)F , the 
equilibrium of Hamilton equations of  (5). 

As before, we divide the parameter plane 1 2( , )Fτ  into nine 
cases as follows, where λ’s are the eigenva- lues of the second 
derivative of the Hamiltonian (36): 

Case 10: 1 20, 0Fτ = =  implies λ = 0, 0, 0, 0. 
Case 11: 1 2, 0Fτ ∈ <R implies λ = ± r11, 11 11 11; , 0.iw r w± >  
Case 12: 1 20, 0Fτ < =  implies 12λ 0,0, ;iw= ±  12 0.w >  
Case 13: 2

1 2 1 20, 0,(45 ) 360 0F Fτ τ< > − >  
 implies 131 132λ ; ;iw iw= ± ± 131 132 0.w w> >  

Case 14: 2
1 2 1 20,  0,  (45 ) 360 0F Fτ τ< > − =   

                implies 14 14 14λ , ;  0.iw iw w= ± ± >  
Case 15: 2

1 2 1 2, 0,(45 ) 360 0F Fτ τ∈ > − <R    
                implies 15 15 15 15λ ;  , 0.a ib a b= ± + >  
Case 16: 2

1 2 1 20,  0,  (45 ) 360 0F Fτ τ> > − =   
                implies 16 16 16λ , ;  0.r r r= ± ± >  
Case 17: 2

1 2 1 20,  0,  (45 ) 360 0F Fτ τ> > − >  
                implies 171 172 171 172λ , ;  0.r r r r= ± ± > >  
Case 18:   1 20, 0Fτ > =  implies 18λ 0,0, ;r= ±  0.>  

Where the eigenvalues in Case 1j have the same expressions 
as the correspond Case j (for j = 0, 1,…,8) except the change of 

2F  to 2F− and then we have the following corollary: 

Corollary 10 The equilibrium 4
23( ,0,0,0)F of equation (3) is 

Liapunov stable in Case 13 except when 131 132 2w w = , almost 
stable in Case 14, and unstable otherwise. 

Fig. 2 illustrates Corollary 10 in the parameter plane 1 2( , )Fτ . 

 

Figure 2: Nine cases in the parameter plan 1 2( , )Fτ for 
equilibrium 2

4
3( ,0,0,0).F  The equilibrium is Liapunov stable in 

Case 13 except when 131 132 2,w w = i.e., 2F  2
1

18
5 τ= −  with 1 0,τ <  

the ”***” curve, almost stable in Case 14, and Liapunov 
unstable otherwise. 

VI. NUMERICAL RESULTS  

For verifying the stability results, we assume that the bump 
b(x) of equation (2) has a compact support on [–1, 1] and solve 
(2) numerically as an initial value problem starting from x = –2 
on the range 2 x− ≤  500≤ by using the classical fourth-order 
Runge- Kutta method, which will be called Scheme 1. We 
adjust the size of | |b to change the values of n nd dxη  at x = 1, n = 
0, 1, 2, 3. The numerical results show that when the values 
of n nd dxη at x = 1, n = 0, 1, 2, 3, are sufficiently close to (0, 0, 
0, 0) then ( )xη is bounded in a neighborhood of (0, 0, 0, 0) 
for 2− ≤  500x ≤ if the zero solution is stable. For most of the 
unstable cases, ( )xη becomes unbounded as x increases even if 
the values of n nd dxη at x = 1, n = 0, 1, 2 , 3, are sufficiently 
close to (0, 0, 0, 0). This is because the condition that the initial 
values are sufficiently close to zero is not sufficient to find a 
bounded solution if the equilibrium point zero is unstable. 
Another reason is that if the values of n nd dxη at x = 1, n = 0, 1, 
2 , 3 obtained from our numerical scheme do not match the 
bounded solutions at x = 1 in these unstable cases, the solutions 
will be unbounded for x > 1. However, there are some 
exceptions in Case 1 and Case 5 where bounded solutions exist 
on 2 500x− ≤ ≤ . 

VII. CONCLUSION 

Nine cases in the parameter plane 1 2( ,  )Fτ  for equilibrium 
(0,0,0,0). The equilibrium is Liapunov stable in Case 3 except 
when 1 2 2,w w =  i.e., 2F

2
1

18
5 τ= −  with 1 0,τ <  the ”***” curve, 

almost stable in Case 4, and Liapunov unstable otherwise. 
Nine cases in the parameter plan 1 2( , )Fτ for equilibrium 

2
4
3( ,0,0,0).F  The equilibrium is Liapunov stable in Case 13 

except when 131 132 2,w w = i.e., 2F  2
1

18
5 τ= −  with 1 0,τ <  

the ”***” curve, almost stable in Case 14, and Liapunov 
unstable otherwise. 

VIII.    APPENDIX  

Numerical formulas for Theorem 3 and 8 
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In [12], Markeev considered the resonance situation 
for 1 2 2,3w w w= = with a Hamiltonian in the form 

1 2 3 4

2 2 2 2 2 2
1 1 1 2 2 2

3

1 1( ) ( )
2 2 v v v v

v

H p w q p w q g
=

= + − + + ∑% % % % %  

3 31 2 4 1 2 4

1 2 3 4

5
1 2 1 2 1 2 1 2

4
(| | )v vv v v v v v

v v v v
v

q q p p h q q p p O z
=

+ +∑ %% % % % % % % % %  

where 
2 2 2 2
1 2 1 2 1 2 3 4| | ,   .z q q p p v v v v v= + + + = + + +% % % %%  

When 1 2 2,w w w= = Markeev [12] proved Theorem 8 and 
provided numerical formulas for computing 1002 ,x  1002y in (31) 
as follows: 

1
1002 0111 1002 12002

2 2

1 1 ,
2 2 2
wx g g g
w w

= − − +% % %  

1 1
1002 0012 0210 11012

2 2

1 .
2 2 2
w wy g g g

w w
= − + +% % %  

When 1 2 3,w w w= = Markeev [12] proved Theorem 3 and 
also provided numerical formulas for computing 

1003 1003 2020 1111,  ,  ,  ,x y l l  and 0202l  in (15) as follows: 
1

1003 1003 0120 0012 0120 0012 2 1002 1011
9 ( ) (
5

x u x x y y w x y−= − + −  

          2
1011 1002 2 1002 0201 1002 0201) 4 ( )x y w x x y y−+ + +  

          0003 0111 0003 0111
3 ( ),
2
x x y y+ +  

1
1003 1003 0120 0012 0012 0120 2 1002 1011

9 ( ) (
5

y v x y x y w y y−= − − −  

          2
1011 1002 2 1002 0201 1002 0201) 4 ( )x x w y x x y−− + −  

          0003 0111 0003 0111
3 ( ),
2
y x x y+ −  

2 2 2 2 2
2020 2020 2 0030 0030 1020 1020

27 3( ) ( )
8 2

l h w x y x y′= + + + +  

          2 2 2 2
0120 0120 1011 1011

9 1( ) ( )
10 2

x y x y+ + − +  

         2 2 2
2 0021 0021

9 ( ),
56
w x y− +  

2 2 2 2 2
1111 1111 1002 1002 2 0012 0012

2 3( ) ( )
3 10

l h x y w x y′= − + + +  

         2 2 2 2 2
2 0021 0021 0120 0120 0111 0120

9 18( ) ( ) 2(
14 5
w x y x y x x− + − + −   

         1
0111 0120 2 0201 1011 1011 0201) 4 ( ),y y w x y x y−+ − +  

2 2 2 2 2 2
0202 0202 2 0003 0003 2 0201 0201

3 ( ) 6 ( )
8

l h w x y w x y−′= − + − + +  

          2 2 2 2 2 2 2
1002 1002 0111 0111 2 0012 0012

1 1 3( ) ( ) ( )
6 2 40
x y x y w x y+ + + + +  

where 
3 1 21 1 1 1

1003 1 0013 2 1300 2 1102 1 2 02112 2 2 2 ,u w h w h w h ww h− − −= + − −% % % %  
1 2 31 1 1 1

1003 1 2 0112 1003 2 1201 1 2 03102 2 2 2 ,v w w h h w h w w h− − −= − − + +% % % %   
2 23 3 1

2020 1 0040 1 4000 20202 2 2 ,h w h w h h−′ = − − −% % %  
1 1 1 1

1111 1 2 0022 1 2 2200 1 2 0220 1 2 2002 ,h w w h w w h w w h w w h− − − −′ = + + +% % % %  
2 23 3 1

0202 2 0004 2 0400 02022 2 2 ,h w h w h h−′ = − − −% % %  
2

0030 0030 1 2010 ,x g w g−= −% %  

1 3
0030 1 1020 1 3000 ,y w g w g− −= −% %  

131
1020 1020 1 30002 2 ,x g w g−= − −% %  

13 1
1020 1 0030 1 20102 2 ,y w g w g−= +% %  

1
1011 1 0021 1 2001,x w g w g−= − −% % 1 1 1

1011 1 2 0120 1 2 2100 ,y w w g w w g− − −= +% %  
1 1 1

0111 1 2 1002 1 2 1200 ,x w w g w w g− − −= +% % 1
0111 2 0012 2 0210 ,y w g w g−= − −% %  

131
0201 2 0102 2 03004 4 ,x w g w g−= − −% %  

23 1
0201 2 0003 02014 4 ,y w g g= −% %  

1 3
0003 2 0102 2 0300 ,x w g w g− −= − +% %   

2
0003 0003 2 0201,y g w g−= − +% %  

1 21 1 1
0120 2 0021 1 1110 1 2 20012 2 2 ,x w g w g w w g− −= − + +% % %  

1 21 1 1
0120 2 0120 1 2 1011 1 21002 2 2 ,y w g w w g w g− −= − − +% % %  

1 1 2 1
0021 2 0120 1 1011 1 2 2100 ,x w g w g w w g− − − −= − −% % %  

1 1 2
0021 0021 1 2 1110 1 2001,y g w w g w g− − −= − −% % %  

1 21 1 1
1002 1 2 0111 1002 2 12002 2 2 ,x w w g g w g− −= − − +% % %  

2 11 1 1
1002 1 0012 1 2 0210 2 11012 2 2 ,y w g w w g w g− −= − + +% % %  

2 1 1
0012 0012 2 0210 1 2 1101,x g w g w w g− − −= − + −% % %  

1 1 1 2
0012 2 0111 1 1002 1 2 1200 ,y w g w g w w g− − − −= − − +% % %  
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